

    
      
          
            
  
Welcome to Redirectory’s documentation

Redirectory is a tool that manages redirects on a cluster level. Requests that would
usually end in a 404 PAGE NOT FOUND can now redirect to new pages specified with custom rules.
It binds itself as the default backend (essential a wild card) of your ingress controller and
catches all the request that the cluster can’t find an ingress rule for.


	KEY FEATURES

	
	Build to run in Kubernetes.


	Easily scalable by spawning new workers.


	Can handle multiple domains and sub-domains in a cluster.


	Every redirect is represented by a redirect rule. Redirect rules support regex.


	Regex matching performed by Intel’s open source Hyperscan regex engine.


	Can construct new urls by extracting part of old url.
For example get an id from the old url and place it in the new one.


	UI - Easy to use interface so that your marketing people can use it as well.






	AUTHOR

	Kumina B.V. (Ivaylo Korakov)






Install

Install Redirectory and creates all the needed resources for it from scratch.

helm install --name=redirectory redirectory/conf/helm





For more info on installation take a look at the Installation.


Documentation

This part of the documentation will show you how to get started using Redirectory.



	Overview
	The problem

	The solution





	Usage
	Overview

	Rules

	Redirect Rule Explorer

	Bulk Import

	Ambiguous requests

	Hyperscan Database

	Workers and Kubernetes





	Installation
	Installation manually

	Installation with HELM





	Kubernetes

	Testing
	Set up

	Running the tests

	Structure





	License








API Reference

If you are interested in information about a class, specific function or more
this is the place to take a look.



	Redirectory API Reference
	libs_int overview

	models overview

	runnables overview

	services overview

	Contents
	Libs_Int package

	Models package

	Runnables package

	Services package
















Search documentation

If you are looking for something specific try searching the documentation.


	Search Page












          

      

      

    

  

    
      
          
            
  
Overview


The problem

A lot of big companies have large websites that are constantly changing and are
dynamic. This is really nice in order to keep you brand/site up to date with new trends but it also
has a bad side effect. Old web pages get deleted and people opening them are getting 404
errors. Usually companies are familiar with that and they even know which old url should
redirect to which new one but unfortunately there isn’t an easy way to do that in kubernetes at
the moment.




The solution

The Redirectory for Kubernetes project aims to solve this problem once and for all of the
companies. It aims to provide a set of features which makes it easy for people of Kumina or
customers of Kumina to manage their redirects on their Kubernetes clusters. The project will live
on the ingress level in a cluster and will intercept all requests that the ingress is not able to
serve and otherwise would send out a 404. Redirectory will catch those errors and try to find the
best new url to redirect to in order for the customer to have a seamless experience even though
they might be using old and inactive urls.







          

      

      

    

  

    
      
          
            
  
Usage

This part of the documentation assumes you already have Redirectory
setup and running on a Kubernetes cluster and you have access to the
User Interface provided by the management pod.


Overview

This is a piece of software for redirecting requests
that would usually end up with a 404 response to a new destination specified by
given rules. It is made to work and take advantage of a Kubernetes environment.
What you are currently looking at is the so called “management panel” or whatever you
would like to call it.

From here you can manage amd access all of the features provided by Redirectory.
This User Guide aims to show you how you can use it!
Lets begin with the rules.




Rules

Rules are the main things that tells Redirectory how to redirect the incoming requests.
This section will show you how to:


	Create new rules


	Exit existing rules


	And delete not needed once




In order for it to redirect lets say:

https://old.example.com/.* -> to -> https://new.example.com/





we will first need to enter a rule for this. First you will have
to go to the Redirect Rule Explorer section.

There underneath the search filters you will find a button CREATE NEW REDIRECT RULE:
Once clicked a menu with a few options will appear. The first thing to specify is
the domain you would like to redirect from. Keep in mind this domain should be configured
that it points to the cluster you are using Redirectory in. After you are done with the domain
it should look something like this:

[image: Create domain PNG]
The next thing we need to configure is the path of the domain we just added. Lets to this one the
same way as the domain. You might have noticed that we have a (.*) in
the path of the rule.

This is called Regex and it is one of the features of Redirectory, If you have
a regex expression you need to toggle to switch between Regex and Literal

See a little bit more info on Regex in the note below.


Note

REGEX A really simple tutorial.

Regex is quite an expansive topic we don’t need much to be able to use it.
It is used to select text and in our case URLs. Here are most of the things you will
need to get started:







	syntax

	meaning



	.

	any character



	\d

	just numbers



	\w

	letters and numbers



	*

	zero or more



	+

	one or more






Now we can chain them together like this:

/test/path.*





which will match any of those:

/test/path/any
/test/path/of
/test/path/those
/test/path/123







Now that we now what we are actually typing in we can fill it in and it should look
like the following:

[image: Create path PNG]
You can fill in the destination the exact same way we did the first two. The last thing
that needs to be configured is the weight of a rule. Why do we need it? Sometimes you
can get conflicting rules that both of them match the same request. When this happens Redirectory
has to know which rules has bigger weight (priority). This is expressed with the weight value
of the rule. By default all rules get a weight of 100.

Now we can just create the rule with the CREATE button.




Redirect Rule Explorer

With the Explorer you have all the things you would need in order to manage all
of the Redirect Rules for Redirectory. Like we discussed in the Rules section here
you can create a new rule but also much more.

On top are the filters. With them you can search through all of the rules you have.
You can stack multiple filters to narrow down your search even more. Also keep in mind
that for the domain, path and destination filters you can use (*) which is an fnmatch.


Note

FNMATCH or also called Function Match is a way simpler form of regex.
Basically you can have a (*) which is equivalent to (.+) in Regex
and and will match one or more.



After you set the filters just press the button APPLY FILTERS.

Once you have located the rule that you want in order to view it, edit or
delete it you can just click on it: Then the following options will be given for that rule:

[image: Create path PNG]
Keep in mind the rules are not updated automatically in the User Interface. To make sure
your are seeing the latest changes to the rules please click the REFRESH PAGES button.




Bulk Import

But what if I have a lot of rules? For this situation you can make use of the bulk import
feature. With it you can upload a CSV (Coma Separated Values) file and all of the rules
will be added at once. Because CSV is a basic format a lot of programs support an export to it.
You will have to refer to the documentation of the program you are using for more information on
exporting the data as CSV.

Take a look at the Bulk Import Section for more information on how the CSV file should be formated
in order to get the smooth import.

Once you have uploaded the file the import will begin immediately. The time it takes to process and add
all the rules varies on how of course how many you have.




Ambiguous requests

Ambiguous requests are requests for which Redirectory was unable to decide 100% of what
should be the final destination. What does this mean? The main reason of you seeing
ambiguous requests is that you have some rules that are not configured correctly.

Sometimes it happens that two or more rules intersect each other and Regex has trouble choosing
which one is the more important one because all of them match. Example of intersection:

1. ggg.test.kumina.nl/test/path/.*
2. \\w+.test.kumina.nl/test/path/.*
3. .*.test.kumina.nl/test/pa.*





Now if we make a requests that looks like this:

ggg.test.kumina.nl/test/path/aaabb





we will match all of the three rules and Redirectory will not know which one should it choose.
When this happens Redirectory will always choose the first rule (with the smallest id) and it will
also save the request as ambiguous in order for a person to take a look and change the weights of the
rules in order not to happen again.

You will be able to see the ambiguous requests section. There are a few options you can make use of in this
section.
On the top right there is the RELOAD AMBIGUOUS REQUESTS button:
Once you click an entry/request you are presented with two options.
Test option will put this request in the Test Section and show you what is happening
behind the scenes. From there you can specify the correct weights for the rules in order
to avoid any ambiguous requests in the future.
Once you have fixed the issue for a given ambiguous request you can delete it with the
second option. See image below for better understanding.

[image: Create path PNG]



Hyperscan Database

You have probably noticed that when adding, updating and deleting a rule
you have a message that say that the changes will not apply until you
compile a new Hyperscan database. This is due to the backend and how Hyperscan works.
First make all the changes you would like and then once you are done with all of them
you can compile/create a new Hyperscan database.

The settings are located in the Hyperscan Database and Workers Section.
Now that you have made the changes you wanted to the rules you can press the
COMPILE NEW HS DB button. This will create a new Hyperscan Database and
apply it to all of the workers. That is everything you need to be worried about
with Hyperscan. If you are interested in the workers and how they work please take
a look at the next section in the User Guide.




Workers and Kubernetes

Redirectory is an application that runs in Kubernetes and makes use of it’s scaling features.
That is why the application is split into two parts: management and workers.

The workers are the one that process all of the incoming requests. That is why they need to
be up to date with the newest version of the Hyperscan Database. In other words the Redirect Rules.

You will find all of the options for the management and workers in the Hyperscan Database and Workers
Section.
From there you can see the status of each worker and the current database they have loaded on them. This
information
updates automatically every 10 seconds or you can click the REFRESH button to update now.

The COMPILE NEW HS DB button creates a new database and updates all the workers after that.
If for some reason a worker is out of date you can use the UPDATE ALL button or by clicking
on the out of date workers and updating it individually. From there you can view the configuration
of the workers as well. Take a look at the picture below:

[image: Create path PNG]






          

      

      

    

  

    
      
          
            
  
Installation

The application is made to run on a Kubernetes cluster.
There are a few things you need to have in order to deploy it.


	Persistent Volume - In order for the management pod to store the rules (data) in case
of a failure or restart. Workers don’t have persistent volumes. They sync their data from the
management pod.


	Role bindings - Needed because the application must know of worker and management pods.
The following permissions are needed for a Role resource:










	resources

	verbs



	endpoints

	get, list, watch



	pods

	get, list, watch






You would be able to find all the .yaml configuration files in the Redirectory repository.


Installation manually

This installation method is NOT recommended!
All of the needed configuration files are located under the folder:

$ redirectory/conf/kubernetes





You will have to apply all the files manually to your cluster with the following command:

$ kubectl apply -f management_ingress.yaml
$ kubectl apply -f management_svc.yaml -f worker_svc.yaml
... and so on





You may or may not need to edit the configuration files to fit your particular setup.




Installation with HELM

To make the installation easier we are making use of HELM. It is a soft of package
manager for Kubernetes but more like a templating engine for Kubernetes .yaml configuration files.

If you are not familiar with HELM please take a look at theirs documentation on how to use it:
HELM docs [https://helm.sh/docs/]

Before continuing make sure you have HELM installed on your kubernetes cluster.


Install

Install Redirectory and creates all the needed resources for it from scratch.

$ helm install --name=redirectory redirectory/conf/helm








Update

Updates only the resources/things that have changes since the last update or install
of Redirectory

$ helm upgrade redirectory redirectory/conf/helm








Delete

Deletes Redirectory from the Kubernetes cluster.


Warning

When deleting the application like this it will also DELETE ALL it’s data.
You will not be able to get the data back.



$ helm delete --purge redirectory













          

      

      

    

  

    
      
          
            
  
Kubernetes

Redirectory is meant to run in a Kubernetes cluster. Kubernetes
is a really huge topic and it will not be covered in this documentation.
Let’s call it a pre-requisite. If you would like to get started you can
check the official get started guide [https://kubernetes.io/docs/tutorials/kubernetes-basics/].

The application is split into two parts. The worker pods which only handle
redirecting requests and a management pod which handles all other functionalities of
the application.

To gain a better understanding of how the application runs in Kubernetes please refer to
the diagram below.

[image: Cluster Design PNG]




          

      

      

    

  

    
      
          
            
  
Testing

For the Redirectory project unit testing is encouraged! The library of
choice to help us with implementing the unit tests is called PyTest and
you can see their docs at: pytest docs [https://docs.pytest.org/en/latest/].


Set up

Before we start testing Redirectory let’s setup our testing environment. There is
already a nice requirements_test.txt file we can use for this. You can
create an environment with the following moment:

mkvirtualenv redirectory_test -r requirements_test.txt








Running the tests

We can run the tests with the following command:

PYTHONPATH=. pytest





and if you would like to see the stdout while the tests are running:

PYTHONPATH=. pytest -s








Structure

Because we make use of pytest the tests folder is split into two as shown bellow:

tests
├── cases
│   ├── database
│   └── hyperscan
├── fixtures
│   ├── configuration.py
│   ├── database_ambiguous.py
│   ├── database_empty.py
│   ├── database_populated.py
│   └── hyperscan.py





Fixtures are functions that will run before every test. Let’s say
that a certain test needs an already loaded empty database in order to run.
We can create a fixture database_empty and add it as a requirement
to this particular unit test.

This is how the database_empty fixture would look like:

@pytest.fixture
def database_empty(configuration):
    # Import DB Manager first before the models
    from redirectory.libs_int.database import DatabaseManager

    # Import the models now so that the DB Manager know about them
    import redirectory.models

    # Delete any previous creations of the Database Manager and tables
    DatabaseManager().reload()
    DatabaseManager().delete_db_tables()

    # Create all tables based on the just imported modules
    DatabaseManager().create_db_tables()






Tip

Fixtures can be added as requirements for other fixtures. In this case
before we can init the database we need to make sure the configuration is
available.



and the unit test will look like this:

def test_add_ambiguous_request(self, database_empty):
    """
    Test Description ...
    """
    # Get session
    from redirectory.libs_int.database import DatabaseManager
    db_session = DatabaseManager().get_session()

    # Here is your actual test
    assert True

    # Return session
    DatabaseManager().return_session(db_session)






Must do

Always return the session to the database before your the end of your test









          

      

      

    

  

    
      
          
            
  
License

Redirectory is released under the BSD 3 Clause [https://opensource.org/licenses/BSD-3-Clause].

BSD 3-Clause License

Copyright (c) 2019, kubernetes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:


	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.


	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.





          

      

      

    

  

    
      
          
            
  
Redirectory API Reference

This part of the documentation is for developers who would like
to know the insides of the project. Here you will find all of the
documentation of the source code of Redirectory.


The project is split into different packages for better structure.

Here is a quick overview of all of the packages that the project consists of:




libs_int overview

Libs_int is the main package that holds most of the main logic of the application.
The main goal is to move out the logic from the API endpoints themselves and have it
in one place.
This package holds logic for quite a few things:


	Config - .yaml configuration files


	Database - all the needed classes and methods to interact with the database


	Hyperscan - all of the logic of the Hyperscan regex engine


	Importers - different file importers. At the moment only CSV.


	Metrics - logic about Prometheus metrics


	Service - helper classes and methods for API functionality. Also Gunicorn.







models overview

Redirectory uses a SQLite3 database which sits as a file in the data folder of
the application. The Models packages contains the different models for the database.
Redirectory is using SQLAlchemy library to the it’s interactions with the database.




runnables overview

Again because Redirectory is made for Kubernetes we split up the application in three different parts:


	Management


	Worker


	Compiler




Because of this we need a nice way to separate between those different modes.
Here the runnables come in play. A runnable is a class which makes use of the
run() method which loads different things and prepares the application to
run in the correct mode.




services overview

The service package is where all of the different API endpoints are situated.
Because the application is made for Kubernetes there are a few different modes
that Redirectory can run as. Therefore the API endpoints are split in the same manner:


	Management Endpoints


	Worker Endpoints




Based on the node_type which is specified in the config.yaml the different sets
of API endpoints are loaded at startup. In other words, if you run the application
as management you won’t be able to call worker endpoints and the other way around.


Important

Keep in mind the stats endpoints are loaded in both management and worker mode.






Contents



	Libs_Int package
	redirectory.libs_int.config package
	redirectory.libs_int.config.configuration module





	redirectory.libs_int.database package
	redirectory.libs_int.database.database_actions module

	redirectory.libs_int.database.database_manager module

	redirectory.libs_int.database.database_pagination module

	redirectory.libs_int.database.database_rule_actions module





	redirectory.libs_int.hyperscan package
	redirectory.libs_int.hyperscan.hs_actions module

	redirectory.libs_int.hyperscan.hs_database module

	redirectory.libs_int.hyperscan.hs_manager module

	redirectory.libs_int.hyperscan.search_context module





	redirectory.libs_int.importers package
	redirectory.libs_int.importers.csv_importer module





	redirectory.libs_int.metrics package
	redirectory.libs_int.metrics.metrics module





	redirectory.libs_int.service package
	redirectory.libs_int.service.api module

	redirectory.libs_int.service.api_actions module

	redirectory.libs_int.service.gunicorn_server module

	redirectory.libs_int.service.namespace_manager module









	Models package
	Redirect Rule

	Path Rule

	Domain Rule

	Destination Rule

	Ambiguous Requests

	Hyperscan DB Version





	Runnables package
	redirectory.runnables.compiler module

	redirectory.runnables.management module

	redirectory.runnables.runnable module

	redirectory.runnables.runnable_service module

	redirectory.runnables.worker module





	Services package
	Contents
	Worker Endpoints
	Worker Get HS DB Version Endpoint

	Worker Reload HS DB Endpoint





	Status Endpoints
	Status Health Check Endpoint

	Status Readiness Check Endpoint

	Status Get Node Configuration Endpoint





	Management Ambiguous Endpoints
	Management Add Ambiguous Request Endpoint

	Management Delete Ambiguous Request Endpoint

	Management List Ambiguous Request Endpoint





	Management Database Endpoints
	Management Compile HS Database Endpoint

	Management Get HS DB Version Endpoint

	Management Reload Management HS DB Endpoint

	Management Reload Worker HS DB Endpoint

	Management Reload Workers HS DB Endpoint





	Management Kubernetes Endpoint
	Management Get Management Pod Endpoint

	Management Get Worker Pods Endpoint





	Management Rules Endpoint
	Management Add Rule Endpoint

	Management Delete Rule Endpoint

	Management Update Rule Endpoint

	Management Get Rule Endpoint

	Management Get Page Endpoint

	Management Bulk Import Endpoint

	Management Check Request Endpoint





	Management Sync Endpoints
	Management Sync Download Files Endpoint





	Root Endpoints
	Management UI Endpoint

	Worker Redirect Endpoint























          

      

      

    

  

    
      
          
            
  
Libs_Int package



	redirectory.libs_int.config package
	redirectory.libs_int.config.configuration module





	redirectory.libs_int.database package
	redirectory.libs_int.database.database_actions module

	redirectory.libs_int.database.database_manager module

	redirectory.libs_int.database.database_pagination module

	redirectory.libs_int.database.database_rule_actions module





	redirectory.libs_int.hyperscan package
	redirectory.libs_int.hyperscan.hs_actions module

	redirectory.libs_int.hyperscan.hs_database module

	redirectory.libs_int.hyperscan.hs_manager module

	redirectory.libs_int.hyperscan.search_context module





	redirectory.libs_int.importers package
	redirectory.libs_int.importers.csv_importer module





	redirectory.libs_int.metrics package
	redirectory.libs_int.metrics.metrics module





	redirectory.libs_int.service package
	redirectory.libs_int.service.api module

	redirectory.libs_int.service.api_actions module

	redirectory.libs_int.service.gunicorn_server module

	redirectory.libs_int.service.namespace_manager module













          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.config package



	redirectory.libs_int.config.configuration module









          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.config.configuration module


	
class redirectory.libs_int.config.configuration.Configuration

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
path = None

	




	
values = None

	











          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.database package



	redirectory.libs_int.database.database_actions module

	redirectory.libs_int.database.database_manager module

	redirectory.libs_int.database.database_pagination module

	redirectory.libs_int.database.database_rule_actions module









          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.database.database_actions module


	
class redirectory.libs_int.database.database_actions.NoneType

	Bases: object [https://docs.python.org/3/library/functions.html#object]






	
redirectory.libs_int.database.database_actions.encode_model(model: sqlalchemy.ext.declarative.api.DeclarativeMeta, parent_class: Any = None, expand: bool = False) → dict

	Encodes a DB instance object of a given model into json


	Parameters

	
	model – The DB model instance to serialize to json


	parent_class – A DB model might inherit from another DB model. Pass the parent class in order to be
serialized correctly


	expand – to include relationships or not






	Returns

	a dictionary with basic data types that are all serializable










	
redirectory.libs_int.database.database_actions.encode_query(query: list, expand: bool = False) → list

	Loops through all of the objects in a query and encodes every object
with the help of encode_model() function. All of the individual encoded
models are added into a list and then returned.


	Parameters

	
	query – the query that you would like to encode


	expand – if you should expand relationships in the models






	Returns

	a list of dictionaries which are the encoded objects










	
redirectory.libs_int.database.database_actions.get_or_create(session, model, defaults=None, **kwargs)

	Gets an instance of an object or if it does not exist then create it.


	Parameters

	
	session – the database session


	model – the model / table to ger or create from


	defaults – any default parameters for creating


	**kwargs – the criteria to get or create






	Returns

	a tuple(p,q)
p: an instance of the object and
q: if it is new or old










	
redirectory.libs_int.database.database_actions.get_table_row_count(db_session, model_table) → int

	Gets the number of rows in a given database in the given
database session


	Parameters

	
	db_session – the database session to use for db actions


	model_table – the model / table






	Returns

	integer represent the number of row in the table










	
redirectory.libs_int.database.database_actions.sanitize_like_query(query_str: str) → str

	Sanitizes a string to be used as a query in the DB.
It will replace a * with % only when the star is not escaped.


	Parameters

	query_str – original string to sanitize



	Returns

	sanitized converted string













          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.database.database_manager module


	
class redirectory.libs_int.database.database_manager.DatabaseManager

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
create_db_tables()

	Will create all model’s tables associated with the current DatabaseManager base.
The creation of those tables is safe. If a table already exists it will not be created again.
If the DatabaseManager is not initialized then a ValueError will be raised.






	
delete_db_tables()

	Will drop all tables associated with the current base of the DatabaseManager.
Every model’s table that inherits from this base will be dropped.
If the DatabaseManager is not initialized then a ValueError will be raised.






	
get_base()

	Gets the current base that all models should inherit from.
Once a model inherits from this base it will be associated with it.


	Returns

	the current base










	
get_session()

	Creates a scoped session with with the help of the session maker.
This session is specific to the current thread from where this function is called.
If a session already exists it will be returned but if not a new one will be created.
If the DatabaseManager is not initialized then a ValueError will be raised.


	Returns

	a database session for the current thread










	
reload()

	




	
return_session(session)

	Closes the given session and removes it from DatabaseManager to prevent from any further use.
Sets the session of the DatabaseManager to None


	Parameters

	session – the session to remove














	
redirectory.libs_int.database.database_manager.get_connection_string()

	Generates a connection string to be passed to SQLAlchemy.
The string is created from the current loaded configuration with
the help of the Configuration() class.
There are two options for both SQLite and MySQL database connections.


	Returns

	a connection string for SQLAlchemy to use for an engine













          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.database.database_pagination module


	
class redirectory.libs_int.database.database_pagination.Page(items, page, page_size, total)

	Bases: object [https://docs.python.org/3/library/functions.html#object]






	
redirectory.libs_int.database.database_pagination.paginate(query, page: int, page_size: int) → redirectory.libs_int.database.database_pagination.Page

	Creates a query with the help of limit() and offset() to represent a page.
Also counts the total number of items in the given database.


	Parameters

	
	query – the query which specifies the model tha paginate


	page (int [https://docs.python.org/3/library/functions.html#int]) – the page number


	page_size (int [https://docs.python.org/3/library/functions.html#int]) – how many items per page






	Returns

	a Page object with all the items inside













          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.database.database_rule_actions module





          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.hyperscan package



	redirectory.libs_int.hyperscan.hs_actions module

	redirectory.libs_int.hyperscan.hs_database module

	redirectory.libs_int.hyperscan.hs_manager module

	redirectory.libs_int.hyperscan.search_context module









          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.hyperscan.hs_actions module





          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.hyperscan.hs_database module





          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.hyperscan.hs_manager module





          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.hyperscan.search_context module


	
class redirectory.libs_int.hyperscan.search_context.SearchContext(original: str, **kwargs)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]


	
handle_match(destination_id: int, from_index: int, to_index: int)

	Handles a hyperscan matched passed from the match_event_handler.
If the length of the match matches the length of the original search query
it will be added to the matched_ids.


	Parameters

	
	destination_id – the id of the matched expression from Hyperscan


	from_index – from where the match starts


	to_index – until where the match ends













	
is_empty()

	Checks in any matches have been found associated with this context


	Returns

	a boolean representing if any matches are found










	
matched_ids = None

	




	
original = None

	











          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.importers package

This package/folder contains the different importers Redirectory has.

At the moment only one is available but more may be added in the future
if they are requested or people contribute.

Follow the links bellow to see the API of the importer.



	redirectory.libs_int.importers.csv_importer module









          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.importers.csv_importer module





          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.metrics package



	redirectory.libs_int.metrics.metrics module









          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.metrics.metrics module


	
redirectory.libs_int.metrics.metrics.start_metrics_server()

	Starts a http server on a port specified in the configuration file
and exposes Prometheus metrics on it.
Also removes GC_COLLECTOR metrics because they are not really needed.









          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.service package



	redirectory.libs_int.service.api module

	redirectory.libs_int.service.api_actions module

	redirectory.libs_int.service.gunicorn_server module

	redirectory.libs_int.service.namespace_manager module









          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.service.api module


	
class redirectory.libs_int.service.api.Api(app=None, version='1.0', title=None, description=None, terms_url=None, license=None, license_url=None, contact=None, contact_url=None, contact_email=None, authorizations=None, security=None, doc='/', default_id=<function default_id>, default='default', default_label='Default namespace', validate=None, tags=None, prefix='', ordered=False, default_mediatype='application/json', decorators=None, catch_all_404s=False, serve_challenge_on_401=False, format_checker=None, **kwargs)

	Bases: flask_restplus.api.Api


	
base_path

	The API path


	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

















          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.service.api_actions module


	
redirectory.libs_int.service.api_actions.api_error(message: str, errors: Union[str, list], status_code: int)

	Returns an api error with a given status and a message/messages


	Parameters

	
	message – A overall message of the error. E.g. Wrong input.


	errors – A message in str format or a list of strings for multiple error messages


	status_code – The status of the error. E.g. 404, 503 ..
















          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.service.gunicorn_server module


	
class redirectory.libs_int.service.gunicorn_server.GunicornServer(app, options=None)

	Bases: gunicorn.app.base.BaseApplication

This class provides the ability to run gunicorn server from
inside of python instead of the running it through the command prompt
Gives you a nicer way to handle it and you can override key methods
to make it more specific for our use case


	
static get_number_of_workers(is_worker: bool = False)

	Calculates the number of workers the gunicorn server will use






	
init(parser, opts, args)

	




	
load()

	




	
load_config()

	This method is used to load the configuration from one or several input(s).
Custom Command line, configuration file.
You have to override this method in your class.






	
static load_metric_server()

	When run() is called on Gunicorn it starts a new process with this flask App.
The metric server must run in the same process as the Flask API in order to
share the metrics. This function starts the metric server when the Flask APP
is loaded into the new process.













          

      

      

    

  

    
      
          
            
  
redirectory.libs_int.service.namespace_manager module


	
class redirectory.libs_int.service.namespace_manager.NamespaceManager

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
get_namespace(name: str)

	




	
namespace_map = {}

	











          

      

      

    

  

    
      
          
            
  
Models package

Here as a diagram of the database followed by their corresponding classes. I think
they are simple enough to understand directly ;)

[image: Database UML Diagram]

Redirect Rule

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	from datetime import datetime

from kubi_ecs_logger import Logger, Severity
from sqlalchemy import Column, Integer, DateTime, ForeignKey, UniqueConstraint
from sqlalchemy.orm import relationship

from redirectory.libs_int.database import DatabaseManager

base = DatabaseManager().get_base()


class RedirectRule(base):
    __tablename__ = "redirect_rule"

    id = Column(Integer, autoincrement=True, primary_key=True)

    domain_rule_id = Column(Integer, ForeignKey('domain_rule.id'), nullable=False)
    domain_rule = relationship("DomainRule", lazy="joined", foreign_keys=[domain_rule_id])

    path_rule_id = Column(Integer, ForeignKey("path_rule.id"), nullable=False)
    path_rule = relationship("PathRule", lazy="joined", foreign_keys=[path_rule_id])

    destination_rule_id = Column(Integer, ForeignKey("destination_rule.id"), nullable=False)
    destination_rule = relationship("DestinationRule", lazy="joined", foreign_keys=[destination_rule_id])

    weight = Column(Integer, nullable=False, default=100)

    created_at = Column(DateTime, default=datetime.now())
    modified_at = Column(DateTime, default=datetime.now())

    __table_args__ = (UniqueConstraint('domain_rule_id', 'path_rule_id', 'destination_rule_id',
                                       name='_domain_path_destination_uc'),)

    def modify(self):
        self.modified_at = datetime.now()

    def delete(self, db_session, safe: bool = True):
        db_session.delete(self)
        db_session.commit()

        Logger() \
            .event(category="database", action="redirect rule deleted") \
            .log(original=f"Redirect rule with id: {self.id} has been deleted") \
            .out(severity=Severity.DEBUG)

        self.domain_rule.delete(db_session, safe=safe)
        self.path_rule.delete(db_session, safe=safe)
        self.destination_rule.delete(db_session, safe=safe)










Path Rule

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	from datetime import datetime

from kubi_ecs_logger import Logger, Severity
from sqlalchemy import Column, Integer, DateTime, String, Boolean, UniqueConstraint, select, func

from redirectory.libs_int.database import DatabaseManager

base = DatabaseManager().get_base()


class PathRule(base):
    __tablename__ = "path_rule"

    id = Column(Integer, autoincrement=True, primary_key=True)
    rule = Column(String(1000))
    is_regex = Column(Boolean, default=False)
    created_at = Column(DateTime, default=datetime.now())
    modified_at = Column(DateTime, default=datetime.now())
    __table_args__ = (UniqueConstraint("rule", "is_regex", name="_rule_regex_uc"),)

    def modify(self):
        self.modified_at = datetime.now()

    def delete(self, db_session, safe: bool = True):
        if safe:
            from redirectory.libs_int.database import get_usage_count
            if get_usage_count(db_session, type(self), self.id) > 0:
                return

        db_session.delete(self)
        db_session.commit()

        Logger() \
            .event(category="database", action="path deleted") \
            .log(original=f"Path with id: {self.id} has been deleted") \
            .out(severity=Severity.DEBUG)










Domain Rule

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	from datetime import datetime

from kubi_ecs_logger import Logger, Severity
from sqlalchemy import Column, Integer, DateTime, String, Boolean, UniqueConstraint, select, func

from redirectory.libs_int.database import DatabaseManager

base = DatabaseManager().get_base()


class DomainRule(base):
    __tablename__ = "domain_rule"

    id = Column(Integer, autoincrement=True, primary_key=True)
    rule = Column(String(1000))
    is_regex = Column(Boolean, default=False)
    created_at = Column(DateTime, default=datetime.now())
    modified_at = Column(DateTime, default=datetime.now())
    __table_args__ = (UniqueConstraint("rule", "is_regex", name="_rule_regex_uc"),)

    def modify(self):
        self.modified_at = datetime.now()

    def delete(self, db_session, safe: bool = True):
        if safe:
            from redirectory.libs_int.database import get_usage_count
            if get_usage_count(db_session, type(self), self.id) > 0:
                return

        db_session.delete(self)
        db_session.commit()

        Logger() \
            .event(category="database", action="domain deleted") \
            .log(original=f"Domain with id: {self.id} has been deleted") \
            .out(severity=Severity.DEBUG)










Destination Rule

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	from datetime import datetime

from kubi_ecs_logger import Logger, Severity
from sqlalchemy import Column, Integer, DateTime, String, Boolean, UniqueConstraint, select, func

from redirectory.libs_int.database import DatabaseManager

base = DatabaseManager().get_base()


class DestinationRule(base):
    __tablename__ = "destination_rule"

    id = Column(Integer, autoincrement=True, primary_key=True)
    destination_url = Column(String(1000))
    is_rewrite = Column(Boolean, default=False)
    created_at = Column(DateTime, default=datetime.now())
    modified_at = Column(DateTime, default=datetime.now())
    __table_args__ = (UniqueConstraint("destination_url", "is_rewrite", name="_destination_rewrite_uc"),)

    def modify(self):
        self.modified_at = datetime.now()

    def delete(self, db_session, safe: bool = True):
        if safe:
            from redirectory.libs_int.database import get_usage_count
            if get_usage_count(db_session, type(self), self.id) > 0:
                return

        db_session.delete(self)
        db_session.commit()

        Logger() \
            .event(category="database", action="destination deleted") \
            .log(original=f"Destination with id: {self.id} has been deleted") \
            .out(severity=Severity.DEBUG)










Ambiguous Requests

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from datetime import datetime

from sqlalchemy import Column, Integer, DateTime, String

from redirectory.libs_int.database import DatabaseManager

base = DatabaseManager().get_base()


class AmbiguousRequest(base):
    __tablename__ = "ambiguous_request"

    id = Column(Integer, autoincrement=True, primary_key=True)
    request = Column(String(1000), unique=True)
    created_at = Column(DateTime, default=datetime.now())










Hyperscan DB Version

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from sqlalchemy import Column, Integer, String

from redirectory.libs_int.database import DatabaseManager

base = DatabaseManager().get_base()


class HsDbVersion(base):
    __tablename__ = "hs_db_version"

    id = Column(Integer, autoincrement=True, primary_key=True)
    old_version = Column(String, nullable=True)
    current_version = Column(String, nullable=False)













          

      

      

    

  

    
      
          
            
  
Runnables package



	redirectory.runnables.compiler module

	redirectory.runnables.management module

	redirectory.runnables.runnable module

	redirectory.runnables.runnable_service module

	redirectory.runnables.worker module









          

      

      

    

  

    
      
          
            
  
redirectory.runnables.compiler module





          

      

      

    

  

    
      
          
            
  
redirectory.runnables.management module





          

      

      

    

  

    
      
          
            
  
redirectory.runnables.runnable module


	
class redirectory.runnables.runnable.Runnable

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]


	
config = None

	




	
run()

	











          

      

      

    

  

    
      
          
            
  
redirectory.runnables.runnable_service module





          

      

      

    

  

    
      
          
            
  
redirectory.runnables.worker module





          

      

      

    

  

    
      
          
            
  
Services package

This package contains all endpoints that Redirectory has.
Just like other parts of the application the API Endpoints are
also split into different parts:


	Management - All endpoints for management and UI


	Worker - All endpoints for workers


	Status - Endpoints for watching the status of the application


	Root - Endpoints that are bound to / (root path). UI for management and redirect for worker





Contents



	Worker Endpoints
	Worker Get HS DB Version Endpoint

	Worker Reload HS DB Endpoint





	Status Endpoints
	Status Health Check Endpoint

	Status Readiness Check Endpoint

	Status Get Node Configuration Endpoint





	Management Ambiguous Endpoints
	Management Add Ambiguous Request Endpoint

	Management Delete Ambiguous Request Endpoint

	Management List Ambiguous Request Endpoint





	Management Database Endpoints
	Management Compile HS Database Endpoint

	Management Get HS DB Version Endpoint

	Management Reload Management HS DB Endpoint

	Management Reload Worker HS DB Endpoint

	Management Reload Workers HS DB Endpoint





	Management Kubernetes Endpoint
	Management Get Management Pod Endpoint

	Management Get Worker Pods Endpoint





	Management Rules Endpoint
	Management Add Rule Endpoint

	Management Delete Rule Endpoint

	Management Update Rule Endpoint

	Management Get Rule Endpoint

	Management Get Page Endpoint

	Management Bulk Import Endpoint

	Management Check Request Endpoint





	Management Sync Endpoints
	Management Sync Download Files Endpoint





	Root Endpoints
	Management UI Endpoint

	Worker Redirect Endpoint















          

      

      

    

  

    
      
          
            
  
Worker Endpoints


Worker Get HS DB Version Endpoint




Worker Reload HS DB Endpoint







          

      

      

    

  

    
      
          
            
  
Status Endpoints


Status Health Check Endpoint




Status Readiness Check Endpoint




Status Get Node Configuration Endpoint







          

      

      

    

  

    
      
          
            
  
Management Ambiguous Endpoints


Management Add Ambiguous Request Endpoint




Management Delete Ambiguous Request Endpoint




Management List Ambiguous Request Endpoint







          

      

      

    

  

    
      
          
            
  
Management Database Endpoints


Management Compile HS Database Endpoint




Management Get HS DB Version Endpoint




Management Reload Management HS DB Endpoint




Management Reload Worker HS DB Endpoint




Management Reload Workers HS DB Endpoint







          

      

      

    

  

    
      
          
            
  
Management Kubernetes Endpoint


Management Get Management Pod Endpoint




Management Get Worker Pods Endpoint







          

      

      

    

  

    
      
          
            
  
Management Rules Endpoint


Management Add Rule Endpoint




Management Delete Rule Endpoint




Management Update Rule Endpoint




Management Get Rule Endpoint




Management Get Page Endpoint




Management Bulk Import Endpoint




Management Check Request Endpoint







          

      

      

    

  

    
      
          
            
  
Management Sync Endpoints


Management Sync Download Files Endpoint







          

      

      

    

  

    
      
          
            
  
Root Endpoints


Management UI Endpoint




Worker Redirect Endpoint







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   r
   


   
     		 	

     		
       r	

     
       	[image: -]
       	
       redirectory	
       

     
       	
       	   
       redirectory.libs_int	
       

     
       	
       	   
       redirectory.libs_int.config	
       

     
       	
       	   
       redirectory.libs_int.config.configuration	
       

     
       	
       	   
       redirectory.libs_int.database.database_actions	
       

     
       	
       	   
       redirectory.libs_int.database.database_manager	
       

     
       	
       	   
       redirectory.libs_int.database.database_pagination	
       

     
       	
       	   
       redirectory.libs_int.hyperscan.search_context	
       

     
       	
       	   
       redirectory.libs_int.metrics	
       

     
       	
       	   
       redirectory.libs_int.metrics.metrics	
       

     
       	
       	   
       redirectory.libs_int.service	
       

     
       	
       	   
       redirectory.libs_int.service.api	
       

     
       	
       	   
       redirectory.libs_int.service.api_actions	
       

     
       	
       	   
       redirectory.libs_int.service.gunicorn_server	
       

     
       	
       	   
       redirectory.libs_int.service.namespace_manager	
       

     
       	
       	   
       redirectory.runnables.runnable	
       

   



          

      

      

    

  

    
      
          
            

   Index


   Index pages by letter:


   
   A
     | B
     | C
     | D
     | E
     | G
     | H
     | I
     | L
     | M
     | N
     | O
     | P
     | R
     | S
     | V
     


   Full index on one page
                                               (can be huge)

   



          

      

      

    

  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 
  

    
      
          
            

Index 
  
    
    Index
    

    
 